SOS EXPLORER: SOFTWARE ARCHITECTING TOY PROBLEM

A Description

This problem demonstrates how to solve an architecting problem in the software domain using SoS
Explorer using a toy example. The problem is one where a software architecture is needed for a
new data analytics application. The necessary functionality required is known, but the problem is
how to obtain it optimally for a given set of business objectives. For this problem, a component is a
software implementation delivering functionality and a package is a set of one or more components.
There are a number of available off-the-shelf (OTS) components that may be used in the overall
solution. There is also the option to develop certain components in-house. All in-house development
must be in Java, Scala, or Python. Each component may be written in one any of these languages
regardless of the languages used for other components. The application itself must also be written
in one of these languages.

The performance of the software development effort will be evaluated by the following objectives:
affordability, performance, scalability, flexibility, and robustness. The functionality required by the
application falls under four categories and has been identified as follows:

e Report generation

— Office Open XML (OOXML)
— Portable Document Format (PDF)
e Visualization
— Graph
— Flow
— Multi-dimensional (MD)
— Geospatial (GS)
e Clustering
— BIRCH
- DBSCAN
e Predictive Modeling
— Support vector machines (SVM)
— Generalized linear models (GLM)

— Deep belief networks (DBN)

The following four tables detail the software application and component options along with
their implementation language, cost, performance, scalability, and functionality. The performance
and scalability are relative indexes where larger numbers are better. Table [1] lists the options for
the report generating components, table [2|is for the visualization components, and table|3|is for the
clustering and predictive modeling components. Table |4] is for the application development itself.

B Modeling

B.1 Overview

When using SoS Explorer, it is important to note that it seeks to maximize objectives. Therefore
entities that need to be minimized, such as cost, must be recast as a maximized entity such as
affordability. Also, entities that are selectable need to be cast as systems. In this case, software
packages act as systems. The other items must be treated as either characteristics, capabilities,

Page 1 of 6

SOS EXPLORER: SOFTWARE ARCHITECTING TOY PROBLEM

Table 1: Report Generation Software Packages

Package Language Cost Perf Scaling OOXML PDF

Report A Java $2,000 2 2 v v
Report B Python $1,000 1 2 v v
Report C Java $500 1 1 v

Report D Java $500 1 1 v

Table 2: Visualization Software Packages

Package Language Cost Perf Scaling Graph Flow MD GS

Visual A Java $5,000 4 3 v v v v
Visual B Python $2,000 1 2 v v v v
Visual C Python $400 1 1 v v v

Visual D Java $2,000 5 3 v
Visual E Python $1,500 2 3 v

or interfaces. In SoS Explorer, characteristics are represented using real numbers and describe a
property of a system. Therefore, the characteristics are language (Java, Scala, or Python), cost,
performance, and scalability. The capabilities are boolean values and are the elemental components
of functionality such as PDF support. The interfaces are a boolean matrix indicating which systems
are capable of interfacing with one another.

The characteristics matrix, (C), has dimensions N¢ x Ng where N¢ is the number of cha-
racteristics and Ng is the number of systems. Cj; is defined as the ith characteristic of the jth
system. Likewise, the capabilities matrix, (C’), has dimension N¢v x Ng where N{, is the number
of capabilities. Finally, the feasible interface matrix, (F'), has dimension Ng x Ng.

Together, the systems, characteristics (C'), capabilities (C”), and feasible interfaces (F') define
the problem’s meta-architecture. From an optimization standpoint, the meta-architecture is static
and stands apart from an architecture. In SoS Explorer, an architecture is simply a set of systems
and interfaces. These sets are defined in a vector called a chromosome by the evolutionary algo-
rithms used to optimize the architecture. The functions S and I extract the system and interface
information from a chromosome and are defined as

1 if the ith system is selected in X

0 otherwise

S(X, 1) = { (1)

and
1 if the ith and jth systems have an interface in X

I(X,i,j) = { (2)

0 otherwise

where X is the chromosome.

Page 2 of 6

SOS EXPLORER: SOFTWARE ARCHITECTING TOY PROBLEM

Table 3: Clustering and Predictive Modeling Software Packages

Package Language Cost Perf Scaling BIRCH DBSCAN SVM GLM DBN

Cluster A Java $1,000 4 3 v v
Cluster B Scala $1,000 4 6 v v
Cluster C Python $500 1 2 v v
PM A Java $3,000 4 3 v v v v v
PM B Scala $3,000 4 6 v v v v v
PM C Python $1,000 1 2 v v v v v
In-house A Java $200 2 2 v v
In-house B Scala $200 2 4 v v
In-house C Python $100 1 1 v v
In-house D Java $400 2 2 v v v
In-house E Scala $400 2 4 v v v
In-house F Python $200 1 1 v v v

Table 4: Application Software

Package Language Cost Perf Scaling
Application A Java $10,000 3 2
Application B Scala $15,000 3 6
Application C Python $5,000 1 1

B.2 Objectives

The objectives are individually modeled as a function of the chromosome containing the selected
systems and interfaces along with the characteristics, capabilities, and feasible interfaces. The first
objective, affordability (O;), can be modeled as

Ng Ng

01(X,C) == S(X,i) | Coosti + > S(X,5)Cost,iBCrumgs Crang; (3)
i=1 j=1
J#i

where X is the chromosome and 3; ; is the cost factor to create an interface between components
with languages i and j. These cost factors are defined in Table[5] The second objective, performance
(O2), can be modeled by averaging the performance values of the selected components:

Zz’]\isl S(X7 2‘)(jl:'erf,i

00X, €)= S S(X,4)

(4)

Page 3 of 6

SOS EXPLORER: SOFTWARE ARCHITECTING TOY PROBLEM

The next objective, scalability (Oz), can be modeled by averaging the scalability values:
Z‘]\isl S(X, Z-)C'Scale,i
N K
> i1 S(X, 1)

The fourth objective, flexibility (Oy), is the surplus of capabilities (components) and can be modeled
by

0s(X,C) = = (5)

NS Ncl
04(X,C") = —Nov + Y _S(X,i)) _Cj; (6)
i=1 j=1

Hence, flexibility is related to the ability to perform substitutions within the architecture. The
final objective, robustness (Os), is a measure of interface redundancy and can be modeled as

Ng Ng
O5(X) = —Ns+ Y _S(X,4) > S(X,5)1(X,4,5) (7)
i=1 j=i

This predicts the maximum impact of an interface between two components.

Table 5: Inter-Language Interface Costs

Language Java Scala Python

Java 0.01 0.02 0.04
Scala 0.02 0.01 0.04
Python 0.04 0.04 0.01

B.3 Constraints

The evolutionary algorithms allow constraints to be enforced via a mechanism known as chromo-
some fixing. Using this technique, the chromosomes are modified to meet feasibility requirements.
An issue with using fixing is that it can work against the evolutionary process. To mitigate this,
the actual chromosomes are not modified, but rather a function, G, is used to map the chromo-
some to it’s feasible compliment which is then passed into the objective function. In other words,
when constraints are enabled then the objectives are passed G(X) instead of X. This way, the
evolutionary operations are not undermined by the enforcing of constraints.

There are two constraints required by this problem. The first constraint is that each capability
(component) must be present in the architecture. This may be performed by Algorithm The
second constraint is that all the interfaces must be feasible and that the required paths are present.
The required paths are listed in Table [6] and are represented by the matrix ~. The associated
algorithms for removing infeasible interfaces and adding missing ones are in Algorithms [2] and
respectively. Missing paths are remedied in the simplest manner possible, which is to add an
interface directly between the systems (packages). Since a path is required, feasibility of this
interface is assumed.

Page 4 of 6

SOS EXPLORER: SOFTWARE ARCHITECTING TOY PROBLEM

Algorithm 1 Add missing capabilities

1: procedure REQUIREALLCAPABILITIES(X , C”)
2 for i < 1 to N do

3 7«0

4 k+ -1

5: hasCapability < false

6 while —hasCapability A (j < Ng) do
7 if C}; then

8 if S(X,j) then

9 hasCapability < true

10: else

11: k+«3j

12: end if

13: end if

14: j—3i+1

15: end while

16: if —hasCapability A\ (k # —1) then
17: X’ «+ SETSYSTEM(X, k, true)
18: else

19: X'+ X
20: end if
21: end for
29: return X’

23: end procedure

> For each capability
> System index

> Non-selected system with capability ¢

> If system j has capability ¢
> If system j is present
> Capability 4 is present

> Remember non-selected system with capability ¢

> Next system

> If capability ¢ is missing
> Add system k with capability ¢

> No changes to chromosome

Algorithm 2 Remove infeasible interfaces

1: procedure REMOVEINFEASIBLEINTERFACES(X , F)

2 X'+« X

3 for i <+ 1 to Ng do

4 for j < 1 to Ng do

5: if ¢ # j then

6: if I(X,4,j) then

7 if ~(S(X,i) AS(X,j) A F;;) then

8 X' < SETINTERFACE(X", 1, j, false)
9

: end if
10: end if
11: end if
12: end for
13: end for
14: return X’

15: end procedure

> Copy chromosome

> For each system i

> For each system j

> Only consider different systems
> If interface is present

> If not feasible

> Remove interface

Page 5 of 6

SOS EXPLORER: SOFTWARE ARCHITECTING TOY PROBLEM

Algorithm 3 Add required paths

1. procedure ADDREQUIREDPATHS(X, C)
2 X'+ X > Copy chromosome
3 for i < 1 to Ng do > For each system i
4 if S(X,7) then > If system is selected
5: for all m € {RG, Vis, Cluster, PM, App} do > For each major function m
6 if C),; # 0 then > If system 4 has function m
7 for all n € {RG, Vis, Cluster, PM, App} do > For each major function n
8 if (m # n) A ¥, then > If path required
9: for j < 1 to Ng do > For each system j
10: if (i # j) AS(X,j) A (Cpj # 0) then > If system j has function n
11: if “-HASPATH(X,i,7) then > If path is missing
12: X’ < SETINTERFACE(X", i, j, true) > Add interface
13: end if
14: end if
15: end for
16: end if
17: end for
18: end if
19: end for
20: end if
21: end for
29: return X’

23: end procedure

Table 6: Required Paths By Function

Reporting Visualization Clustering Predictive Application

Reporting v v v
Visualization v v v
Clustering v v v
Predictive v v v
Application v v v v v

Page 6 of 6

	Description
	Modeling
	Overview
	Objectives
	Constraints

